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ABSTRACT. The USDA-ARS Great Plains Framework for Agricultural Resource Management (GPFARM) decision support
system was developed to assist Great Plains producers in making economically viable and environmentally sound strategic
plans for whole farm and ranch systems. A major user requirement for GPFARM is to supply the default plant parameters
required to simulate crop growth. Developing this plant parameter database is difficult because varietal differences, caused
by a genotype by environment (G X E) interaction, increases parameter uncertainty and variability. This article examines
species-based plant parameter sets for simulating winter wheat (Triticum aestivum L.) yield responses, explores the
significance of the G X E interaction on simulating varietal grain yield, and investigates whether simple adjustments to a
species—based plant parameter database can improve simulation of varietal differences across environments. Three plant
parameter sets were evaluated against observed yield data for six locations in eastern Colorado: (1) the Default parameter
set used best estimates from EPIC-based plant parameter databases, (2) the Dryland Agroecosystems Project (DAP)
parameter set further calibrated the default plant parameters against observed yield data for Colorado, and (3) the Theory
parameter set modified DAP parameters based on whether irrigated or dryland conditions were simulated. The Theory
parameter set simulated yield the best when pooling varieties over environments and locations. However, no parameter set
could simulate all the different varietal yield responses to environmental conditions (irrigated or dryland) due to the diverse
G X E interactions. The Theory parameter set best simulated the wheat variety TAM 107 across diverse locations, with little
bias for either irrigated or dryland conditions. Simple adjustments to a few plant parameters based on whether dryland or
irrigated conditions were simulated improved the species—based plant parameter approach used in GPFARM. However, until
a better mechanistic representation of the G X E interaction is incorporated into existing plant growth models, opportunities
for improving yield response to environmental conditions and management will be limited.
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gricultural software developers are increasingly
delivering products (e.g., decision support
systems; simulation models; and budgeting,
record keeping, and irrigation/nitrogen/weed
control management programs or tools) for use by farmers
and ranchers. Unfortunately, most agricultural software is
rarely adopted or used on the farm or ranch, especially
decision support systems (DSS) and simulation models
(Ascough et al., 1999, 2002b). Perhaps the most important

Article was submitted for review in October 2002; approved for
publication by the Soil & Water Division of ASAE in May 2003.

The authors are Gregory S. McMaster; Agronomist, James C.
Ascough II, ASAE Member Engineer, Hydraulic Engineer, Marv J. .
Shaffer, Soil Scientist, Lois A. Deer—Ascough, Agricultural Engineer,
Allan A, Andales, ASAE Member Engineer, Visiting Scientist, and Gale
H. Dunn, Soil Scientist, USDA-ARS Great Plains Systems Research Unit,
Fort Collins Colorado; David C. Nielsen, Agronomist, USDA-ARS
Central Great Plains Research Station, Akron, Colorado; and Pat F. Byrne,
Associate Professor, and Scott D. Haley, Associate Professor, Department
of Soil and Crop Sciences, Colorado State University, Fort Collins,
Colorado. Corresponding author: Dr. Gregory S. McMaster,
USDA-ARS, GPSR, 301 S. Howes St., Room 353, Fort Collins, CO 80521;
phone: 970-490-8340; fax: 970-490-8310; e-mail: greg.mcmaster@
ars.usda.gov.

reasons for not adopting these products are because they are
viewed as too difficult to use and the investment of time and
effort to learn, set up, and run the software is not returned in
value to the producer.

The USDA-ARS Great Plains Systems Research Unit has
developed a decision support system named GPFARM (Great
Plains Framework for Agricultural Resource Management).
GPFARM 2.5 encompasses stand—alone components such as
a user interface, simulation model, and databases (Ascough
et al., 2002a; McMaster et al., 2002b; Shaffer et al., 2000)
that, when used in conjunction with other components (e.g.,
farm economic budgeting and multicriteria decision analysis
modules), provides a unique decision support tool for farmers
and ranchers. GPFARM was designed to provide decision

-support for use by farmers and ranchers in strategically

managing their complex agricultural systems. From the
inception of the GPFARM project, producer input on system
characteristics and functionality has been solicited. The crop
growth component that simulates growth and yield also had
to meet these requirements, and still be sufficiently robust to
cover the diverse environments, cropping systems, and
management practices employed across the Great Plains.
Providing a robust crop growth model for producers necessi-
tated that parameters for simulating growth be provided in a
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default database. Unfortunately, correctly parameterizing
existing agricultural simulation models and decision support
systems has been a major obstacle in successfully applying
these products to research and technology transfer (Ahuja
and Ma, 2002).

Several approaches have been used to address plant
growth parameterization problems. The standard approach
collates a set of parameters for species and selected varieties,
resulting in a species—based plant parameter set. The user is
responsible for parameterizing a particular variety if not
included in the data set or if confidence in the default
parameters is lacking. Parameter values typically are based
on a combination of a single measured value, mean,
mid—point of a range, theoretically derived, or even “best—
guess or intuition.” Difficulties with this approach include
the infeasibility of providing values for all possible varieties
(e.g., wheat has over 100,000 lines), available measurements
are for a limited set of conditions, databases must be
continually updated as new varieties are released, and
databases are not interchangeable between models because
parameters differ.

A rare extension of this approach is to stochastically
sample from a distribution of the parameter. This extension
is further hampered because even fewer data exist to create
a distribution than a single mean value. Efforts to use
functional genomics in parameterization are beginning
(e.g., Hoogenboom et al., 1997; Welch et al., 2003) but are
in their infancy, and much work remains before this approach
is useful for software such as GPFARM.

The many causes of variability must be addressed to
accurately determine plant parameters. It is well known that
plant parameters vary by variety, and that the parameters also
vary spatially and temporally across scales. For example, the
value of a parameter can vary within a plant and among plants
in the “same” environment (e.g., within a small plot) and
across plots, locations, and years. To illustrate this, consider
a parameter that nearly all crop growth models require: the
time required from planting to maturity. Within a wheat
plant, different culms reach maturity at different times, and
considering only main stems, maturity dates differ within a
plot and among plots, locations, and years (McMaster, 1997).
Management practices and varying biotic and abiotic factors
add further to variability in plant growth parameters. While
variance estimates can be associated with each scale of
variability, few data exist to characterize the distribution at
the species level, much less at the variety level.

Another aspect of variability is the genotype by environ-
ment (G X E) interaction that exists at all spatial and
temporal scales. Plant breeders and molecular biologists
have long recognized the G X E interaction, and indeed this
is why yield trials are conducted across locations and years.
An essential implication of the G X E interaction is that as the
environment changes, genotypes do not respond in the same
manner. Yield (or a parameter) for a genotype can respond
generally in one of three ways to the environment (Poehlman
and Sleper, 1995). One response is for the yield of two
genotypes to increase or decrease at a similar rate across an
environmental gradient (e.g., nutrient or water availability,
temperature). This response shows no G X E interaction.
Another response is for the yield of one genotype to increase
or decrease more rapidly than another genotype as the
environmental gradient changes. This is one type of G X E
interaction. The most difficult form of G X E interaction for
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simulation modeling is known as crossover interaction, in
which one cultivar is inferior in yield under one part of the
environmental gradient (e.g., low water availability) but
superior at another part of the environmental gradient
(e.g., high water availability) because yield rankings of
varieties differ depending on environmental conditions.

Crop growth models, almost universally, do not explicitly
simulate the G X E interaction. Other than pioneering efforts
by a few (e.g., Hoogenboom et al., 1997; Welch et al., 2003),
we know of no modeling efforts that even attempt to address
the G X E interaction issue. Rather, it is assumed that the
input value of a parameter for all genotypes has the same
response pattern across all environments. Returning to the
example of thermal time from sowing to maturity, this
assumption ignores the evidence that under different envi-
ronmental conditions, or management practices altering the
environmental conditions, genotypes vary in their relative
ranking of thermal time (i.e., there is a G X E interaction;
McMaster and Wilhelm, 2003). Considering all varieties, we
are likely to find the three G X E responses depending on the
particular varieties selected. For simulation modeling pur-
poses, the hope is that for a particular region the normally
used “adapted” varieties do not show a significant G X E
interaction, and thus avoid the problem.

The crop growth model used in GPFARM (Arnold et al.,
1995) is derived from the Water Erosion Prediction Project
model (WEPP; Flanagan and Nearing, 1995). A default plant
parameter database is provided in which parameters are
distinguished only among species, and it is assumed there is
no G X E interaction. Adverse ramifications of ignoring the
G X E interaction may be diminished as differences in G
become smaller (Welch et al., 2003). For example, varieties
“adapted” to a region often have greater similarity with each
other than with varieties adapted for regions with different
environments. Varieties selected for certain management
practices (e.g., irrigation or dryland) in a region also often
tend to have great similarity in genotype, thus leading to
several questions. How accurately does a species—based plant
parameter set predict varietal yield in decision support
systems such as GPFARM? Are varietal parameters in some
form required to accurately simulate yields? Is the G X E
interaction a significant problem for a DSS such as GPFARM?
Are there simple methods, based on cultural practices (e.g.,
irrigation or dryland farming), for implicitly incorporating
differences in varietal responses to the environment?

The objective of this article is to use different plant
parameter sets for winter wheat to: (1) evaluate the adequacy
of using a species—based plant parameter database in
simulating winter wheat varietal yield responses, (2) explore
the significance of the G X E interaction on simulating winter
wheat grain yield, and (3) determine whether simple
refinements to a species—based database can improve the
simulation of winter wheat varietal differences in a DSS such
as GPFARM.

GPFARM Cropr GROWTH COMPONENT

The GPFARM crop growth component is based on the
Water Erosion Prediction Project (WEPP) model crop growth
component (Amnold et al., 1995; Deer—Ascough et al., 1998),
which is a modified version of the Environmental Policy
Integrated Climate (EPIC) crop growth component
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Williams et al., 1984, 1989). It has been further modified in
GPFARM and incorporates some elements from the Agricul-
tural Land Management Alternatives with Numerical As-
sessment Criteria (ALMANAC) model (Kiniry et al., 1992).
A single model is used for simulating multiple crops by
changing model parameters. Stress factors for water and ni-
trogen are computed using inputs from other independent
models within GPFARM.

The crop growth component can be characterized as using
the energy— or carbon—driven approach common in plant
growth modeling. Potential daily biomass accumulation is
based on the interception of light by the canopy (as
represented by the LAI and light extinction coefficients) and
an energy—to—biomass conversion factor. Limiting abiotic
resources are reflected in growth constraint factors (tempera-
ture, water, and N) reducing the potential daily biomass
accumulation. Carbon and N are partitioned to plant
components (e.g., leaves, roots, grain) based on phenological
growth stage.

Phenological development of the crop is based on thermal
time using daily heat unit accumulation. Daily heat units are
computed using the equation:

(Imax,i +Tmin,i)
HU; =_2—"‘Tbasg j @
where
HU = heat units (°C) on day i
Timax = maximum temperature (°C) on day i
Tinin = minimum temperature (°C) on day i

Thase = crop—specific base temperature (°C) of crop j.

No growth occurs at or below Tpase, and there is no upper
temperature limit.

A heat unit index (HUT) ranging from O at planting to 1 at
physiological maturity is computed as follows:

i
2 HUj
HUL=k=L___
= @
where

HUI = heat index for day i
k = counter representing the summation of days
PHU = potential heat units required to reach maturity for

crop j.

Several equations are used in determining daily potential
biomass production. Interception of photosynthetic active
radiation (PAR) is estimated with Beer’s law (Monsi and
Saeki, 1953):

PAR; =0.02092(RA;)(L0—e 065LAT), €)

where

PAR = photosynthetic active radiation (MJ m-2)

RA = solar radiation (Langleys)

LAI = leaf area index

i =day of the year.

Potential biomass production per day is estimated with the
equation (Montieth, 1977):

ABR=0.0001(BE )(PAR;) 4

where
ABP = potential increase in total biomass on day i
(kg m2)
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BE = energy to biomass conversion parameter for
crop j (kg MJ-1).

Actual daily biomass accumulation is determined by
Leibig’s Law of the Minimum. The daily potential biomass
accumulation (eq. 4) is adjusted daily if one of the plant stress
factors (water, N, or temperature) is less than 1.0 using the

equation:
AB; =(ABE)(REG) ®

where REG is the crop growth regulating factor (the mini-
mum of the water, N, and temperature stress factors) calcu-
lated for day i. The adjusted daily total biomass production
(AB;) is accumulated through the growing season.

The water stress factor is computed by considering supply
and demand in the equation:

nl
Qu

ws: =1
= ©

where

WS = water stress factor (0-1)

w = plant water use in soil layer / (mm)

nl = number of soil layers

E, = potential plant transpiration (mm)

i = day of the year.

The N stress factor is computed by considering the N
demand for biomass production and amount of plant N
uptake in the equation:

ni
Qi
Nsi=H— %)

Dl
where
NS = N stress factor (0-1)
V; = plant N (NO3-N + NH4N) uptake in soil layer /
(kg/ha)

N, = plant N demand

i =day of the year.

N, is calculated as a percentage of daily total biomass
production and varies depending on crop growth stage based
on plant parameters BN1, BN2, and BN3 (table 1) for
emergence, mid—season, and maturity, respectively.

The temperature stress factor is computed with the

equation:
TS; =si n Tavqi"Tbasq J
2 Topt,j~Thase j
where

TS = temperature stress factor (0-1)
Tove = average daily temperature (°C)
Tope = optimum temperature (°C) for crop j
i  =day of the year.
Crop yield for annual crops is estimated using the harvest
index concept, which is adjusted throughout the growing

season according to water stress constraints:

YLDj=(HIA;j)(BAG) ®)

®

where
YLD = crop yield (kg m2) at harvest for crop j
HIA = adjusted harvest index for crop j

1339



Table 1. List of plant parameters, definitions, and values used in the three plant parameter databases (Default, DAP, and Theory) tested. The
Default and DAP parameter sets used the same parameter values for dryland and irrigated conditions. The Theory parameter set used
DAP dryland parameter values, and irrigated parameter values different from dryland values are listed. Blank values (—)
in the DAP and Theory columns have the same value as to the left within a row.

Variable (Units) Definition Default DAP Theory
CRIT (°C days) Growing degree—days from sowing to emergence (annuals) 60 146
GDDMAX (°C days) Growing degree—days from sowing to maturity (annuals) 1700 2300 2500
BTEMP (°C) Base temperature (air) used in calculating growing degree-days 4 0 0
HI (unitless) Harvest index (dry crop yield / total aboveground biomass) 0.42 0.48 —
XMXLAI (m2 m2) Maximum potential leaf area index (LAI) 5 2 4
DLAI (0-1 ratio) Fraction through growing season when LAI begins to decline 0.8 0.7 0.75
DECFCT (0-1 ratio) Fraction of canopy remaining after senescence 1 — —
DROPFC (0-1 ratio) Fraction of aboveground biomass remaining after senescence 1 — —
SPRIOD (days) Period over which senescence occurs 14 — —
RLAD (unitless) LAI decline rate parameter 1 — —
RBIOD (unitless) Biomass—energy decline rate parameter 10 — —
PPOP1 (plants m~2) Parameter relating plant population density to maximum LAI 125 — —
FMLAI1 (0-1 ratio) Parameter relating maximum LAI for a plant population density 0.6 — —
PPOP2 (plants m—2) Parameter relating plant population density to maximum LAI 250 — —
FMLAI2 (0-1 ratio) Parameter relating maximum LAI for a plant population density 0.95 — —
BEINP (kg MJ1) Biomass to energy conversion ratio for-a crop 30 — 35
EXTNCT (unitless) Radiation extinction coefficient 0.65 — —
OTEMP (°C) Optimal temperature for plant growth 15 20 —
BB (unitless) Coefficient relating canopy cover and vegetative biomass 52 — —
BBB (unitless) Coefficient relating canopy height and vegetative biomass 3 — —
RDMAX (m) Maximum rooting depth 1 15 1.25
RSR (unitless) Root biomass to shoot biomass ratio 0.25 — —
BN1 (0-1 ratio) Normal fraction of nitrogen in crop biomass at emergence 0.06 — —
BN2 (0-1 ratio) Normal fraction of nitrogen in crop biomass at mid-season 0.0231 — —
BN3 (0-1 ratio) Normal fraction of nitrogen in crop biomass at maturity 0.0134 — —
HMAX (m) Maximum canopy height 091 — —

Byg = cumulative above ground biomass (kg m~2) before ~ where

SENescence OCCurs. HIA = adjusted harvest index
Harvest index increases nonlinearly from zero at planting WSYF = parameter for crop j expressing drought

using the equation:

HI;=HIO; (HUFH;-HUFH;_j) (10)
where
HI = harvest index on day i
HIO = harvest index under favorable growing

conditions for crop j

HUFH = heat unit factor that affects harvest index for
day i and the previous day (i — 1).

The harvest index heat unit is computed with the equation:

HUI,
HUJ, +¢(65-100HUF)

HUFH;= (11)

where HUFH is the harvest index heat unit on day i. The
constants in equation 11 are set to allow HUFH to increase
from 0.1 at HUI = 0.5 to 0.92 at HUI = 0.9 (Arnold et al.,
1995). This is consistent with economic yield development
of grain crops, which produce the most economic yield in the
second half of the growing season.

Most grain crops are particularly sensitive to water stress
near the growth stage of anthesis (Doorenbos and Kassam,
1979). The harvest index is affected by water stress using the
following equation:

TA; = Hl;
' LO+WSYF; (FHU;)(0.9-WS;)

(12)
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sensitivity (assumed to be a constant 0.01)

FHU = function of crop stage

i = day of the year.

The maximum value for HIA is limited to HI within
GPFARM.

Greater detail on the above equations and other equations
not discussed (e.g., canopy height, canopy cover, LAI, crop
stage factor) can be found in Arnold et al. (1995), Deer—
Ascough et al. (1998), and Kiniry et al. (1992).

METHODS
PLANT PARAMETER SETS

GPFARM crop-specific plant parameters are kept in a
default database to simulate daily growth. Initial default
parameters for winter wheat were derived by examining the
EPIC, ALMANAC, Soil and Water Assessment Tool (SWAT;
Neitsch et al., 2002), and WEPP plant parameter sets that all
use the EPIC crop submodel as the foundation for simulating
growth. Initial parameter values were determined by taking
the midpoint of ranges (if given) or selecting values from
regions or varieties closest to the western Central Great
Plains where possible. After selecting initial default parame-
ters for each crop species, simulations for typical manage-
ment practices using generated and historical weather for
eastern Colorado were conducted to assess the overall yield
response. Critical parameters important in simulating yield
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(e.g., energy to biomass conversion, harvest index, maxi-
mum LAI, thermal time from planting to maturity), found via
experience in using the model, were modified to determine
if the yield response improved compared to county yield
averages. The resulting final default parameter set is denoted
as Default in this article; table 1 lists values for winter wheat
supplied to GPFARM 2.5 users.

The Default parameter set for winter wheat was further
examined and run on a subset of location-treatment-years
for the Dryland Agroecosytems Project (DAP) discussed in
the Evaluation Data Sets section below (Peterson et al.,
2001). Only the wheat-fallow rotation for the summit
position at each location was used in calibration (a total of 27
out of 94 location—treatment-years). As in creating the
Default plant parameter database, important parameters
influencing yield were informally adjusted based on existing
data (e.g., McMaster, 1997; McMaster and Smika, 1988;
McMaster et al., 1992, 1994) for the variety TAM 107 and
“expert opinion” for winter wheat in the western Central
Great Plains until simulated yield was improved (Andales et
al., 2003). The parameters adjusted were harvest index (HI),
maximum potential LAI (XMXLAI), heat unit index when
leaf area index begins to decline (DLAI), thermal time from
sowing to emergence and maturity (CRIT, GDDMAX), base
(BTEMP) and optimum (OTEMP) temperature, and maxi-
mum rooting depth (RDMAX). This parameter set is denoted
DAP in this article, and values are listed in table 1.

The Theory parameter set (table 1) was developed to
address two problems of using species—based plant parameter
databases such as the Default and DAP parameter sets. The
first problem is that producers often pick varieties they
perceive as best adapted for the type of farming they practice,
such as irrigated or dryland. Varieties selected for irrigated or
dryland conditions can differ greatly in traits, and thus
parameter values should likely be changed, but varietal
differences are not typically included in plant parameter
databases. The second problem relates to simulation of
certain processes such as the thermal time from sowing to
emergence and maturity. The GPFARM crop growth model
assumes a static parameter value (GDDMAX) for the thermal
time for the species (or variety), yet it is undeniable that this
value should respond to environmental conditions (particu-
larly water stress) other than merely temperature (McMaster,
1997). Therefore, we theorized that simulating grain yield
responses might be improved by having different parameters
based on dryland and irrigated conditions, which would be an
indirect approach to incorporating varietal differences that is
a simple refinement easily adapted for all crops. The
following parameters were modified for irrigated conditions
only: GDDMAX (increased), XMXLAI (increased), DLAI
(delayed), BEINP (increased), and RDMAX (decreased).
The rationale for direction of change in the parameters is
based on fundamental physiological principles. For instance,
the onset of leaf senescence (DLAI) and maximum LAI
(XMXLAI) is clearly influenced by water availability
(McMaster et al., 1992), and this is not accounted for in the
model.

EVALUATION DATA SETS

The primary data used to evaluate the winter wheat yield
predictions were based on a two—year study conducted at the
Colorado State University Agricultural Research Develop-
ment and Education Center (denoted ARDEC; 40° 39" N,
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105° 00’ W, 1534 m elevation; fine, smectitic, mesic, Aridic
Arguistoll) and the USDA-ARS Central Great Plains Re-
search Station in Akron, Colorado (denoted Akron; 40° 09’
N, 103° 09’ W, 1384 m elevation; fine, smectitic, mesic,
Pachic Arguistoll), both initiated in the fall of 1999. Twelve
winter wheat varieties (or 10 varieties for year 1 at Akron;
listed in fig. 1) differing in presumed heat and drought
tolerance were grown under dryland and irrigated conditions.
Most varieties are commonly used in this region, but several
are adapted to other environments (e.g., Norstar and
Siouxland). The experimental design was a split plot with
dryland/irrigated conditions the main plot factor and variety
the subplot. Replications differed with locations and year:
two replications for 1999-2000 at both locations, and three
(Akron) and four (ARDEC) replications for 2000-2001.
Nitrogen fertilizer was applied at planting to meet recom-
mended levels based on soil tests prior to planting.

Other data were obtained from the long—term DAP study
(Peterson et al., 2001) for three locations in eastern Colorado
(near Sterling, Stratton, and Walsh) initiated in 1986.
Wheat—fallow, wheat—corn—fallow, and wheat—corn—millet—
fallow rotations were grown under no—tillage management at
different topographic positions of a catena. The winter wheat
variety TAM 107 was used through 1998. Nitrogen and
phosphorus fertilizer was applied at planting to meet
recommended levels based on soil tests prior to planting.

The final data set was from a 6—year study conducted at
the Colorado State University Horticultural Farm in Fort
Collins, Colorado (denoted Hortfarm; 40° 36’ N, 104° 59’ W,
1515 m elevation) initiated in 1992 on a Nunn clay loam soil
(fine, smectitic, mesic, Aridic Arguistoll; McMaster et al.,
2002a). A split—plot design, with tillage being the main plot
and residue rate being the subplot, with four replications was
used with the cultivar TAM 107 in a wheat—fallow cropping
system. Soil tests prior to planting indicated that only in the
last year was N and P fertilizer (38 kg N ha! as 32% urea
ammonium nitrate solution, and 9.5 kg P hal as liquid
ammonium polyphosphate: 10-34-0) required to meet
recommended levels.
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Figure 1. Observed grain yield (with 1 SE bar) for 1999-2000 at ARDEC,
Colorado, for dryland and irrigated treatments compared to simulated
grain yield for different parameter data sets. Simulated values are the
three rightmost sets of bars.
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STATISTICAL ANALYSIS

Three statistics were used to evaluate simulation results:
(1) paired t—test to determine if differences existed between
observed and simulated yield, (2) percentage of simulated
yields within 20% of the observed yield (based on producer
expectations of GPFARM yield predictions within about
20% of observed), and (3) root mean square error (RMSE),
with associated sum of the residuals (SRES) and sum of the
absolute residuals (SARES) as described by McMaster et al.
(1992). The SRES and SARES measures give an indication
of the variability around the mean and tendency for
prediction bias and are calculated as:

n
SRES=Y'(OBS -SIM;)
i=1

(13)

n
SARES= )| OBS; —SIM; | (14)
i=l

where OBS; and SIM; are the observed and simulated yield,
respectively. If SRES is small compared to SARES, then er-
rors tend to cancel. If SRES and SARES are large, then the
model tends to overpredict yield if SRES is negative and un-
derpredict yield if SRES is positive.

RESULTS AND DISCUSSION

Varietal grain yield responses to different environments,
both individually and pooled together, were examined by
using the ARDEC and Akron data sets (figs. 1-4). Yield
varied with years and two different environmental conditions
(dryland and irrigated). As expected, irrigated yields were
greater than dryland yields by an average of 56% over the two
years and locations.

The ability of species—based data sets (i.e., Default, DAP,
and Theory) to simulate yield responses across environments
can first be assessed against the observed pooled means
(figs. 1-4). When considering the Default and DAP parame-
ter sets derived primarily for dryland conditions, the
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Figure 2. Observed grain yield (with 1 SE bar) for 2000-2001 at ARDEC,
Colorado, for dryland and irrigated treatments compared to simulated
grain yield for different parameter data sets. Simulated values are the

three rightmost sets of bars.
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observed pooled mean clearly was underpredicted in the irri-
gated and dryland treatments at ARDEC, and the irrigated
treatment at Akron was slightly underpredicted (table 2). The
Theory parameter set, by introducing different parameters
depending on dryland or irrigated conditions, resulted in bet-
ter simulations of irrigated treatments than either the Default
or DAP parameter sets. This suggests that the parameters
used in the relationships leading to yield prediction vary de-
pending on the environment.

Pooling the varieties gives an indication of how varieties
generally respond to different environments, but can obscure
differences based on the particular varieties examined. Using
species—based parameter sets (i.e., Default, DAP, and
Theory) to simulate varietal differences assumes that merely
changing parameters for a variety will work equally well
across environments. In other words, the assumption is that
there is no G X E interaction and only changing the
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Figure 3. Observed grain yield (with 1 SE bar) for 1999-2000 at Akron,
Colorado, for dryland and irrigated treatments compared to simulated
grain yield for different parameter data sets. Simulated values are the three
rightmost sets of bars. Varieties Halt and Yumar were not grown in 2000.
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Figure 4. Observed grain yield (with 1 SE bar) for 2000-2001 at Akron,
Colorado, for dryland and irrigated treatments compared to simulated
grain yield for different parameter data sets. Simulated values are the
three rightmost sets of bars.
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Table 2. Statistical results of simulating grain yield (kg/ha) at ARDEC
and Akron locations using the three plant parameter data sets (table 1).
Observed yield was calculated using the mean of 12 cultivars for a
site—year treatment. Simulation results are presented in figures 1-4.

Statistical Measurel(2] Default DAP Theory
Irrigated and dryland treatments

RMSE 1158 1464 2761

SRES 6361 8821 4313

SARES 7297 9523 6430

Paired t—test (P) 0.04 0.02 0.12
Dryland treatments

RMSE 622 889 889

SRES 1152 2136 2136

SARES 2089 2838 2838

Paired t-test (P) 0.43 0.28 0.28
Irrigated treatments

RMSE 1514 1870 1056

SRES 5208 6685 2177

SARES 5208 6685 3592

Paired t-test (P) 0.06 0.04 0.37

[a] RMSE = root mean square error.
SRES = sum of residuals.
SARES = sum of absolute residuals.
P = probability that there is no difference between observed and
simulated yield.

parameters is required to capture the varietal yield response.
In our case, if the individual varieties are compared to the
simulated yield for the three parameter sets, we would expect
to see a consistent bias if the particular variety did not match
simulated yields for the parameters chosen. This was not
found statistically (data not shown), nor is it apparent in fig-
ures 1-4.

To further explore the possible importance of a G X E
interaction on yield, we examined the percent yield loss
[(irrigated — dryland yield)/irrigated yield X 100] rankings to
water stress treatments between years at ARDEC and Akron
(figs. 5 and 6). Except for two varieties at each location
(Norstar and Arlin at ARDEC, Norstar and Prowers 99 for
Akron), greater yield loss was observed in 2000 than in 2001.
This was expected, as precipitation was less in 2000 than in
2001 (101 mm and 111 mm less precipitation from September
through July for ARDEC and Akron, respectively). These
results are encouraging for modeling using decision support
systems such as GPFARM in that most varieties tended to
respond the same, both between years and locations. Norstar
was an anomaly at both locations. Perhaps the percent yield
loss response of Norstar, which is a cultivar not typically
grown in Colorado, may be partly explained as differentially
responding to environmental variables other than water
because it is adapted/bred for a different region (e.g., photo-
period and vernalization requirements; heat, cold and
drought tolerance; etc.). However, both Arlin and Prowers 99
are commonly grown in Colorado, and this cannot explain
their different behavior compared to the other varieties.
Further, why did Arlin and Prowers 99 behave differently at
only one location? Possibly the unexplained slower rate of
Arlin seedling emergence in 2001 at ARDEC caused a
greater yield loss in 2001, as the importance of seedling
emergence is generally recognized (e.g., McMaster et al.,
2002a). In 2001 at Akron, rust was unusually severe and snow
occurred on 21 May, resulting in about 5 h below freezing, but
nothing unusual in response was observed for Prowers 99.
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Figure 5. Observed and simulated yield loss for 2000-2001 at ARDEC,
Colorado. Simulated values are the three rightmost sets of bars for the
three parameters sets evaluated. Percent yield loss = (irrigated — dryland
yield)/irrigated yield x 100.
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Figure 6. Observed and simulated yield loss for 2000-2001 at Akron, Col-
orado. Simulated values are the three rightmost sets of bars for the three
parameters sets evaluated. Percent yield loss = (irrigated — dryland
yield)/irrigated yield X 100. Varieties Halt and Yumar were not grown in
2000.

Regardless of causes, clearly not all varieties responded simi-
larly in yield loss between years or locations, and it is un-
known how to explain the observed G X E interaction.

The DAP and Theory parameter sets simulated the pooled
mean percent yield loss patterns correctly for both locations
(figs. 5 and 6; statistical results not shown). The Default
parameter set simulated a very low percent yield loss in 2000
at ARDEC, and therefore the observed pattern between 2000
and 2001 was not correctly simulated. No parameter set was
able to correctly simulate both types of varietal yield loss
responses observed between years discussed in the preceding
paragraph.

The G X E interaction on grain yield can further be seen
by examining the change in ranking of percent yield loss of
varieties between years (figs. 5 and 6). For instance, at
ARDEC, Heyne had among the highest percent yield loss in
2000 (57%), along with Halt (60%), Alliance (57%), TAM
107 (55%), and 2137 (54%), but the lowest percent yield loss
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in 2001 (22%). Cultivars Norstar and Arlin were the opposite;
they had among the lowest percent yield loss in 2000 (34%
Norstar and 41% Arlin) and highest in 2001 (50% Norstar and
56% Arlin). At Akron, Siouxland had among the highest
percent yield loss in 2000 (68%, along with 71% for Arlin and
74% for 2137), but among the lowest percent yield loss in
2001 (23%). Prowers 99 had a similar change in ranking as
Siouxland, but slightly less drastic. Norstar was the opposite
(as noted for the ARDEC location above); it had among the
lowest percent yield loss in 2000 (49%) and highest in 2001
(60%). This confirms the expected significant G X E
interaction in grain yield, but perhaps most importantly,
varietal rankings differed between locations, making a priori
prediction of the G X E interaction even more difficult.
Simulating all the various G X E interactions observed in
grain yield or percent yield loss was not possible by any
parameter set.

The second approach to examining G X E interaction was
to plot yield of several varieties across different levels of
water stress at each location (figs. 7 and 8). To do this
qualitatively, a simplistic assessment of water stress based on
growing season precipitation plus irrigation (if applied) was
used, and approximately related to a linear scale on the
x—axis. “Very dry” is represented by dryland treatments in
2000, as precipitation for this year was well below average
(109 mm precipitation from September through July at
ARDEC compared to a 14-year mean of 295 mm; 285 mm
precipitation from September through July at Akron
compared to 93~year mean of 367 mm). Since 2001 had more
precipitation than 2000 (210 mm precipitation from Septem-
ber through July at ARDEC; 396 mm precipitation from
September through July at Akron), dryland treatments for
this year were qualitatively characterized as “dry.” “Wet”
was represented by the mean of the two years of the irrigated
treatment. The primary point is that whether comparing
varieties within a location or the same variety at different
locations, it is clear that varieties differed in their response to
water stress, and certain varieties had different response
patterns for different locations (caution is needed in compar-
ing locations, because they undoubtedly differed in environ-
mental conditions other than water stress).

For instance, at ARDEC, TAM 107 yield increased
approximately linearly in response to water, while Norstar
and Arlin yield response to water stress was slightly concave
upward, and Heyne was slightly concave downward (fig. 7).
At Akron, Norstar responded approximately linearly, TAM
107 was slightly concavely upward, and Arlin and Heyne
yield responded concavely downward to water (fig. 8).
Although not plotted because the graphs would be unread-
able, the other eight varieties showed similarly variable
curves. Unless the curves are parallel to each other, there is
a G X E interaction. However, despite these differences, it
was also apparent that the response of many varieties was
somewhat similar so that not all varieties showed a strong
G X E interaction. Varieties with significant G X E
interaction cannot be simulated using any species—based
parameter set that assumes the same response of varieties
across a gradient of environmental conditions, as typical of
crop simulation models. The next step would be to evaluate
the genotypes to ascertain genetic differences related to
various G X E responses.

The ARDEC and Akron data showed that not all varieties
responded similarly between locations and environments. To
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Figure 7. Genotype by environment interaction for different varieties at
ARDEC, Colorado. Water stress is based on growing season precipitation
from September through July in 1999-2000 (“very dry”) and 2000-2001
(“dry”). The “wet (irrigated)” category includes the mean of the two
years of irrigated treatments. SE of the mean bars are included for the ob-
served yields.
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Figure 8. Genotype by environment interaction for different varieties at
Akron, Colorada. Water stress is based on growing season precipitation
from September through July in 1999-2000 (“very dry”) and 2000-2001
(“dry”). The “wet (irrigated)” category includes the mean of the two
years of irrigated treatments. SE of the mean bars are included for the ob-
served yields.

further explore the ability of GPFARM to simulate grain
yield across locations using different species—based plant pa-
rameter sets, one cultivar (TAM 107, one of the most com-
monly planted varieties in eastern Colorado) was examined.
When considering the SRES and SARES values for estimat-
ing model bias, the Default parameter set overpredicted dry-
land yield and underpredicted irrigated yields (table 3 and
fig. 9; data not shown for individual analysis of dryland and
irrigated yield predictions). The DAP parameter set im-
proved the prediction of dryland yields, although 27 of the 94
treatment-years of the Sterling, Stratton, and Walsh loca-
tions were used for calibrating the parameters of the Default
parameter set (table 3 and fig. 10). The Theory parameter set
improved the irrigated yield predictions (table 3 and fig. 11).
Based on the paired t—test and RMSE statistical measures
(table 3), the Theory parameter set simulated TAM 107 grain
yield across all environments the best, with the DAP parame-
ter set second and the Default parameter set third. Only one
measure, the percent of points falling within 20% of the ob—
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Table 3. Statistical results of simulating TAM 107 grain yield (kg/ha)
across locations using the three plant parameter data sets (table 1).
Simulation results are presented in figures 9-11.

Statistical Measurel2] Default DAP Theory
RMSE 1031 893 811
SRES 43422 9294 4787
SARES 73676 64745 62068
Paired t—test (P) <0.0001 0.29 0.55
% of points within
20% of observed yield 40.4 36.2 36.2

[2] RMSE = root mean square error.
SRES = sum of residuals.
SARES = sum of absolute residuals.
P = probability that there is no difference between observed and
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Figure 9. Observed vs. simulated grain yield for cultivar TAM 107 for the
ARDEC, Akron, Hortfarm, and DAP (comprised of Sterling, Stratton,
and Walsh sites) validation data sets using the Default parameter set. SE
bars available only for ARDEC, Akron, and Hortfarm locations. Open
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Figure 10. Observed vs. simulated grain yield for cultivar TAM 107 for
the ARDEC, Akron, Hortfarm, and DAP (comprised of Sterling, Stratton,
and Walsh sites) validation data sets using the DAP parameter set. SE
bars available only for ARDEC, Akron, and Hortfarm locations. Open
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and Walsh sites) validation data sets using the Theory parameter set. SE
bars available only for ARDEC, Akron, and Hortfarm locations. Open
symbols are dryland conditions; closed symbols are irrigated conditions.

served yield, indicated the Default parameter set as being
slightly better than the other parameter sets.

TAM 107 was a variety with inconsistent G X E
interaction responses to water stress when comparing
between locations (figs. 7 and 8). When considering model
performance across a range of locations with different
management practices, soils, and climates, it appears that a
species—based parameter set divided into irrigated and
dryland parameter subsets (e.g., Theory parameter set) can
simulate TAM 107 grain yield without bias, although
whether the scatter around the one—to—one line is acceptable
is best left to the individual to decide. Besides the normal
causes of simulation error, it is likely that the G X E
interaction is significantly contributing to this error. By
dividing parameters into two sets for dryland and irrigated
conditions, which was easily done a priori in our case, a
simple alternative was provided for improving plant response
relationships with environmental stresses for simulating
yield.

SUMMARY AND CONCLUSIONS

Species—based plant parameter sets cannot reproduce all
the complex G X E interactions exhibited by varieties for
grain yield. If “unusual” varieties are simulated, the user
must be aware that accuracy of results depends greatly on the
degree of G X E interaction exhibited by the variety, and
certainly significant error is introduced into yield predictions
by varietal differences.

Simulating grain yield for one wheat variety (TAM 107),
which showed some G X E interaction, across a range of
locations and environments was improved by subdividing the
parameters into irrigated and dryland values. Undoubtedly, a
significant portion of the error was caused by poor mechanis-
tic representation of the G X E interaction in the model. It
was not sufficient to merely change parameter values for the
potential levels or rates of processes for a variety without also
knowing how the level or rate is altered across environmental
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conditions, which is the implication of the G X E interaction
we observed. Subdividing certain parameter values to
distinguish environmental conditions (i.e., dryland or irri-
gated), especially when the model does not adjust the
parameter for the environmental conditions, provides a
relatively simple improvement for the plant response func-
tion to an important environmental condition.
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